
Fine-tuning a
multi-language model for
information retrieval using
the Solr Manual

By Elpidio Gonzalez

Summary

We fine-tuned a pre-trained

multilanguage SBERT model on the

Solr Manual to test the feasibility of

having a semantic search engine

capable of retrieving documents

written in a particular language, in

this case, English, using non-english

queries.

Agenda

● Semantic Search Overview

● Pretrained Models

● Solr Manual as a Dataset

● Fine-Tuning a Model

● Model Evaluation

● Solr Schema and Indexing

● Improvements

● Demo

Semantic Search

Semantic search is a data searching
technique that aims to understand
the meaning and context of words
and phrases in a search query, as
opposed to just matching keywords.

This means that it can provide more
relevant and accurate results to a
user's query, even if the search terms
used aren't an exact match to the
content being searched.

Document Representation

Semantic Search in Solr

In the context of Solr, Semantic Search if referred to as Neural Search.

The first implementation was contributed to the Solr open source community
by Sease in January 2022 thanks to the work of Alessandro Benedetti and Elia
Porciani.

This implementation relies on the Apache Lucene implementation for
K-nearest neighbor search to provide:

● A Dense Vector Field type : To store text embeddings

● A KNN Query Parser to run knn search on a target vector field : To
compare query - document similarity.

Pretrained Models

Pretrained text models are deep learning

models that have been pre-trained on large

amounts of text data to learn the underlying

patterns and relationships between words

and phrases. These models are trained using

techniques such as neural networks, and are

designed to capture the meaning and context

of text data. As such, they are the perfect tool

to calculate a document's text embeddings.

An example of such models is SBERT.

Pre-trained Model Advantages

● Time and Resource Savings

● High Performance

● Transfer Learning

● Accessible and Open Source

Pre-trained multi-lingual model

For our particular task we used the

sentence-transformers/paraphrase-multilingual-mpnet-base-v2

model available on Hugging Face.

This particular model was trained using over a dozen datasets of parallel data

(multiple languages), notably WikiMatrix, a dataset of 135M Parallel Sentences in

1,620 Language Pairs from Wikipedia.

This model maps sentences & paragraphs to a 768 dimensional dense vector space

and can be used for tasks like clustering or semantic search.

https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2

Solr Manual

The Solr manual is a comprehensive
guide that provides detailed
information on how to install,
configure, use, and maintain the
Solr search platform.

It is the official Solr documentation,
written and published by Solr
committers, presented in adoc
format.

Adoc Format

The AsciiDoc (adoc) format is a lightweight markup language that is used to

write technical documentation.

Some of the features of the AsciiDoc format include:

● Headings and subheadings

● Lists and tables

● Links and cross-references

● Images and diagrams

● Source code blocks with syntax highlighting

Cleaning the Documents

● Remove Code Snippets, Hyperlinks and Images
○ Code snippets ([source, ...])
○ Links (xref)
○ Images (image::)

● Remove License Notice
● Leave Tables
● Use heading and subheading syntax to split documents.

○ Heading (=Heading)
○ Sub-heading 1 (==Heading)

Splitting the Manual

The root document 'Field Type Definitions and Properties would be split into:

● Field Type Definitions and Properties / Field Type Definitions in the

Schema

● Field Type Definitions and Properties / Field Type Properties / General

Properties

...

● Field Type Definitions and Properties / Choosing Appropriate Numeric

Types

…

This data processing resulted in a total of 2,972 documents.

Faceting

Fine-Tuning

Query Generation

 BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information

Retrieval Models proposed using synthetic queries for unsupervised

domain-adaptation approach for dense retrieval models.

We generated 4 extra queries per document and used the original title as a fifth

one.

https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663

Translation

こんにちは

● Target Languages:
 English and Japanese

● Total Training Samples:
 29,720

Fine-tuning a Bi-encoder model

Loss Function

CosineSimilarity?
MultipleNegativesRanking?
Triplet?

Multiple Negatives Ranking Loss

Multiple Negatives Ranking Loss

For each query (a
i
) the MultipleNegativesRankingLoss

class will create negative samples by randomly choosing
non-positive documents associated with the other
queries b

j
 (j != i). So , a batch of samples in a training step

would look like:

(a
1

 - b
1

)
(a

2
 - b

2
)

(a
3

 - b
3

)
 …
(a

n
- b

n
)

(a
1

 - b
1

)
(a

1
 - b

2
)

(a
1

 - b
3

)
 …
(a

1
- b

n
)

(a
2

 - b
1

)
(a

2
 - b

2
)

(a
2

 - b
3

)
 …
(a

2
- b

n
)

(a
n
 - b

1
)

(a
n
 - b

2
)

(a
n
 - b

3
)

 …
(a

n
- b

n
)

 …

Hard negatives can be introduced by structuring the
samples like this: (a

1
 - b

1
- n

1
)

https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss

Evaluation

To evaluate our model we use the InformationRetrievalEvaluator in the SentenceTransformers library. It

provides a way to evaluate the performance of a model on an information retrieval task. It computes

standard IR metrics such as recall, precision, and mean average precision (MAP).

● Input Data : A list of queries and a corresponding list of documents for each query.

● Model Inference: The model is used to encode the queries and documents into fixed-length

vector representations.

● Similarity Scoring: A similarity function such as cosine similarity or dot product. The similarity

scores are used to rank the documents.

● Metrics Calculation: The ranked list of documents for each query is compared to the ground

truth relevance labels to calculate metrics such as recall, precision, and MAP.

● Output: A dictionary containing the computed metrics, including recall, precision, and MAP.

Results

Metric Value Metric Value

Accuracy @ 1 0.890 Recall @ 1 0.890

Accuracy @ 3 0.993 Recall @ 3 0.993

Accuracy @ 5 0.999 Recall @ 5 0.999

Precision @ 1 0.890 NDCG @ 10 0.956

Precision @ 3 0.331 MRR @ 10 0.941

Precision @ 5 0.199 mAP@ 100 0.941

The small print about the results…

The results above look very good because the evaluation is run on the entire corpus. We didn't
work with a train/test split because …

1. The manual will not change drastically over time. The existing documents might change a bit,
but we can consider them pretty much static.

New documents will definitely be added over time, but...

2. Re-training the model using new data is not a computationally expensive operation. The corpus
is very small. Also, we can re-use the generated queries and generate new ones only for
any new additions to the corpus. Given that the training can be finished in under 5 hours
(20 epochs @ Google Colab), we can update the model every time a new Solr version
comes out.

Basically, we don't care about overfitting the model (high variance, low bias), because the model
won't work with unseen data at all.

Improvements

1. Symmetric Vs. Asymmetric Search Models

2. Better Synthetic Queries

3. Real User Queries

Apache Solr Dense Vectors

The dense vector field gives the possibility of indexing and searching dense vectors of float

elements. e.g. [1.0, 2.5, 3.7, 4.1]

Here’s how DenseVectorField should be configured in the schema:

<fieldType name="knn_vector"
class="solr.DenseVectorField"
vectorDimension="4"
similarityFunction="cosine"/>

<field name="myVector" type="knn_vector" indexed="true"stored="true"/>

Apache Solr Dense Vectors

Parameter Name Required Default Description Accepted values

vectorDimension True The dimension of the dense
vector to pass in.

Integer < = 1024

similarityFunction False euclidean Vector similarity function; used in
search to return top K most
similar vectors to a target vector.

euclidean, dot_product or
cosine.

knn Query Parser

Parameter Name Required Default Description

f True The DenseVectorField to search in.

topK False 10 How many k-nearest results to return.

&q={!knn f=myVector topK=10}[1.0, 2.0, 3.0, 4.0]

Demo

Thank you!

